Template A/B testing/Test Edits Analyses
Overview
[edit]This analysis involves tracking the behaviour of editors warned by the 28 bot and Rscprinter Bot:
Analyses Results
[edit]28 bot Registered (templates 145, 146)
[edit]The 28 bot templates for registered users did not show any significant result for blocks or editing (all namespaces) after the posting:
Logistic Regression Analysis on edits events after the posting - R Output
|
---|
Call: glm(formula = template ~ metric, family = binomial(link = "logit"), data = temp_df) Deviance Residuals: Min 1Q Median 3Q Max -1.337 -1.318 1.026 1.043 1.043 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 0.3254 0.3640 0.894 0.371 metric 0.0423 0.5661 0.075 0.940 (Dispersion parameter for binomial family taken to be 1) Null deviance: 71.938 on 52 degrees of freedom Residual deviance: 71.932 on 51 degrees of freedom AIC: 75.932 Number of Fisher Scoring iterations: 4 [1] "Summary of metric for test:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.0000 0.0000 0.4194 1.0000 1.0000 [1] "Summary of metric for control:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.0000 0.0000 0.4091 1.0000 1.0000 |
Logistic Regression Analysis on blocks after the posting - R Output
|
---|
Call: glm(formula = template ~ metric, family = binomial(link = "logit"), data = temp_df) Deviance Residuals: Min 1Q Median 3Q Max -1.326 -1.326 1.036 1.036 1.036 Coefficients: (1 not defined because of singularities) Estimate Std. Error z value Pr(>|z|) (Intercept) 0.3429 0.2788 1.23 0.219 metric NA NA NA NA (Dispersion parameter for binomial family taken to be 1) Null deviance: 71.938 on 52 degrees of freedom Residual deviance: 71.938 on 52 degrees of freedom AIC: 73.938 Number of Fisher Scoring iterations: 4 [1] "Summary of metric for test:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0 0 0 0 0 0 [1] "Summary of metric for control:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0 0 0 0 0 0 |
28 bot Non-registered (templates 145, 146)
[edit]For non-registered users there was a strong effect however the selection of the groups is biased. For blocks and warnings before the postings the test template had a rate of 0.0% and 0.6% while the control group had a rate of 30.4% and 92.4% respectively.
Logistic Regression Analysis on edits events after the posting - R Output
|
---|
Call: glm(formula = template ~ metric, family = binomial(link = "logit"), data = temp_df) Deviance Residuals: Min 1Q Median 3Q Max -1.9111 0.5926 0.5926 0.5926 1.2609 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.6505 0.1387 11.904 < 2e-16 *** metric -1.8447 0.3866 -4.771 1.83e-06 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 404.42 on 415 degrees of freedom Residual deviance: 382.55 on 414 degrees of freedom AIC: 386.55 Number of Fisher Scoring iterations: 3 [1] "Summary of metric for test:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.00000 0.00000 0.04154 0.00000 1.00000 [1] "Summary of metric for control:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.0000 0.0000 0.2152 0.0000 1.0000 |
Logistic Regression Analysis on blocks after the posting - R Output
|
---|
Call: glm(formula = template ~ metric, family = binomial(link = "logit"), data = temp_df) Deviance Residuals: Min 1Q Median 3Q Max -1.850 0.631 0.631 0.631 1.893 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.5130 0.1284 11.783 < 2e-16 *** metric -3.1225 1.1029 -2.831 0.00464 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 404.42 on 415 degrees of freedom Residual deviance: 392.56 on 414 degrees of freedom AIC: 396.56 Number of Fisher Scoring iterations: 4 [1] "Summary of metric for test:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000000 0.000000 0.000000 0.002967 0.000000 1.000000 [1] "Summary of metric for control:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.00000 0.00000 0.06329 0.00000 1.00000 |
28 bot vs Rcsprinter bot
[edit]The Rcsprinter bot typically reverts edits that are classified as "Reverting vandalism and test edits", and more importantly does not leave template warnings on the talk pages of reverted users. This bot was compared to 28 bot.
In order to get data for the RscpritnerBot the postings it was necessary to create a way to modify revision data based on experimental contraints - in this case to observe main namespace revisions and to extract the recipient of the revert from the revision comment. The details of this modification can be found here.
The final analysis showed that among registered users that received template warnings from 28bot significantly outperformed those reverted by Rscprinterbot when observing those who made at least one edit in any namespace after the revert (and posting). The blocks after among the two groups did not differ significantly. Non-registered users that had not received previous warnings were also observed however, there was no significant effect for edits or blocking after the posting in this case.
Logistic Regression Analysis, Registered Users, Edit Events - R Output
|
---|
Call: glm(formula = template ~ metric, family = binomial(link = "logit"), data = temp_df) Deviance Residuals: Min 1Q Median 3Q Max -1.2557 -1.2557 -0.5553 1.1010 1.9728 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 0.1823 0.2708 0.673 0.50078 metric -1.9741 0.6799 -2.904 0.00369 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 104.039 on 75 degrees of freedom Residual deviance: 93.016 on 74 degrees of freedom AIC: 97.016 Number of Fisher Scoring iterations: 4 [1] "Summary of metric for Rscprinterbot:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.00000 0.00000 0.09091 0.00000 1.00000 [1] "Summary of metric for 28bot:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.0000 0.0000 0.4186 1.0000 1.0000 |
Logistic Regression Analysis, Non-Registered Users, Edit Events - R Output
|
---|
Call: glm(formula = template ~ metric, family = binomial(link = "logit"), data = temp_df) Deviance Residuals: Min 1Q Median 3Q Max -0.9005 -0.7858 -0.7858 1.6283 1.6283 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -1.0169 0.1070 -9.507 <2e-16 *** metric 0.3238 0.4751 0.682 0.496 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 545.84 on 468 degrees of freedom Residual deviance: 545.39 on 467 degrees of freedom AIC: 549.39 Number of Fisher Scoring iterations: 4 [1] "Summary of metric for rscprinterbot:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.00000 0.00000 0.05556 0.00000 1.00000 [1] "Summary of metric for 28bot:" Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.00000 0.00000 0.04082 0.00000 1.00000 |